On a quaternionic Maxwell equation for the time-dependent electromagnetic field in a chiral medium

This article has been downloaded from IOPscience. Please scroll down to see the full text article. 2004 J. Phys. A: Math. Gen. 374641
(http://iopscience.iop.org/0305-4470/37/16/013)
View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 171.66.16.90
The article was downloaded on 02/06/2010 at 17:56

Please note that terms and conditions apply.

On a quaternionic Maxwell equation for the time-dependent electromagnetic field in a chiral medium

Sergei M Grudsky ${ }^{1}$, Kira V Khmelnytskaya ${ }^{2}$ and Vladislav V Kravchenko ${ }^{2}$
${ }^{1}$ Department of Mathematics, CINVESTAV, National Polytechnic Institute, Mexico City, Mexico
${ }^{2}$ Department of Telecommunications, SEPI ESIME Zacatenco, National Polytechnic Institute, Av. IPN S/N, C.P. 07738 D.F., Mexico

Received 27 November 2003
Published 5 April 2004
Online at stacks.iop.org/JPhysA/37/4641 (DOI: 10.1088/0305-4470/37/16/013)

Abstract

Maxwell's equations for the time-dependent electromagnetic field in a homogeneous chiral medium are reduced to a single quaternionic equation. Its fundamental solution satisfying the causality principle is obtained which allows us to solve the time-dependent chiral Maxwell system with sources.

PACS number: 03.50.De

1. Introduction

We consider Maxwell's equations for the time-dependent electromagnetic field in a homogeneous chiral medium and show their equivalence to a single quaternionic equation. This result generalizes the well-known (see [9, 16, 23]) quaternionic reformulation of the Maxwell equations for non-chiral media. Nevertheless, the new quaternionic differential operator is essentially different from the quaternionic operator corresponding to the non-chiral case. We obtain a fundamental solution of the new operator in explicit form satisfying the causality principle. Its convolution with a quaternionic function representing sources of the electromagnetic field gives us a solution of the inhomogeneous Maxwell system in a whole space.

2. Maxwell's equations for chiral media

Consider time-dependent Maxwell's equations

$$
\begin{align*}
\operatorname{rot} \vec{E}(t, x) & =-\partial_{t} \vec{B}(t, x) \tag{1}\\
\operatorname{rot} \vec{H}(t, x) & =\partial_{t} \vec{D}(t, x)+\vec{j}(t, x) \tag{2}
\end{align*}
$$

$$
\begin{equation*}
\operatorname{div} \vec{E}(t, x)=\frac{\rho(t, x)}{\varepsilon}, \quad \operatorname{div} \vec{H}(t, x)=0 \tag{3}
\end{equation*}
$$

with the Drude-Born-Fedorov constitutive relations corresponding to the chiral media [3, 20, 21]

$$
\begin{align*}
& \vec{B}(t, x)=\mu(\vec{H}(t, x)+\beta \operatorname{rot} \vec{H}(t, x)) \tag{4}\\
& \vec{D}(t, x)=\varepsilon(\vec{E}(t, x)+\beta \operatorname{rot} \vec{E}(t, x)) \tag{5}
\end{align*}
$$

where β is the chirality measure of the medium. β, ε, μ are real scalars assumed to be constants. Note that the charge density ρ and the current density \vec{j} are related by the continuity equation $\partial_{t} \rho+\operatorname{div} \vec{j}=0$.

Incorporating the constitutive relations (4) and (5) into the system (1)-(3) we arrive at the main object of our study, the time-dependent Maxwell system for a homogeneous chiral medium

$$
\begin{align*}
& \operatorname{rot} \vec{H}(t, x)=\varepsilon\left(\partial_{t} \vec{E}(t, x)+\beta \partial_{t} \operatorname{rot} \vec{E}(t, x)\right)+\vec{j}(t, x) \tag{6}\\
& \operatorname{rot} \vec{E}(t, x)=-\mu\left(\partial_{t} \vec{H}(t, x)+\beta \partial_{t} \operatorname{rot} \vec{H}(t, x)\right) \tag{7}\\
& \operatorname{div} \vec{E}(t, x)=\frac{\rho(t, x)}{\varepsilon} \quad \operatorname{div} \vec{H}(t, x)=0 . \tag{8}
\end{align*}
$$

Application of rot to (6) and (7) allows us to separate the equations for \vec{E} and \vec{H} and obtain in this way the wave equations for a chiral medium
$\operatorname{rot} \operatorname{rot} \vec{E}+\varepsilon \mu \partial_{t}^{2} \vec{E}+2 \beta \varepsilon \mu \partial_{t}^{2} \operatorname{rot} \vec{E}+\beta^{2} \varepsilon \mu \partial_{t}^{2} \operatorname{rot} \operatorname{rot} \vec{E}=-\mu \partial_{t} \vec{j}-\beta \mu \partial_{t} \operatorname{rot} \vec{j}$
$\operatorname{rot} \operatorname{rot} \vec{H}+\varepsilon \mu \partial_{t}^{2} \vec{H}+2 \beta \varepsilon \mu \partial_{t}^{2} \operatorname{rot} \vec{H}+\beta^{2} \varepsilon \mu \partial_{t}^{2} \operatorname{rot} \operatorname{rot} \vec{H}=\operatorname{rot} \vec{j}$.
It should be noted that when $\beta=0,(9)$ and (10) reduce to the usual second order wave equations for non-chiral media. When $\beta \neq 0$ the corresponding wave equations represent partial differential equations of fourth order.

3. Some notation from quaternionic analysis

We will consider biquaternion-valued functions defined in some domain $\Omega \subset \mathbb{R}^{3}$. On the set of such continuously differentiable functions the well-known Moisil-Teodoresco operator is defined by the expression $D=i_{1} \frac{\partial}{\partial x_{1}}+i_{2} \frac{\partial}{\partial x_{2}}+i_{3} \frac{\partial}{\partial x_{3}}$ (see, e.g., [8]), where $i_{k}, k=1,2,3$, are basic quaternionic imaginary units. Denote $D_{\alpha}=D+\alpha$, where $\alpha \in \mathbb{C}$ and $\operatorname{Im} \alpha \geqslant 0$. The fundamental solution for this operator is known [14] (see also [16]):

$$
\begin{equation*}
\mathcal{K}_{\alpha}(x)=-\operatorname{grad} \Theta_{\alpha}(x)+\alpha \Theta_{\alpha}(x)=\left(\alpha+\frac{x}{|x|^{2}}-\mathrm{i} \alpha \frac{x}{|x|}\right) \Theta_{\alpha}(x) \tag{11}
\end{equation*}
$$

where i is the usual complex imaginary unit commuting with $i_{k}, x=\sum_{k=1}^{3} x_{k} i_{k}$ and $\Theta_{\alpha}(x)=-\frac{\mathrm{e}^{\mathrm{i} \alpha|x|}}{4 \pi|x|}$. Note that besides the equation $D_{\alpha} \mathcal{K}_{\alpha}=\delta$ where δ is the Dirac delta function, \mathcal{K}_{α} fulfils the following radiation condition at infinity uniformly in all directions:

$$
\begin{equation*}
\left(1+\frac{\mathrm{i} x}{|x|}\right) \cdot \mathcal{K}_{\alpha}(x)=o\left(\frac{1}{|x|}\right) \quad \text { when }|x| \rightarrow \infty \tag{12}
\end{equation*}
$$

which is in agreement with the Silver-Müller radiation conditions [12].

4. Field equations in quaternionic form

In this section we rewrite the field equations from section 2 in quaternionic form.
Let us introduce the following quaternionic operator:

$$
\begin{equation*}
M=\beta \sqrt{\varepsilon \mu} \partial_{t} D+\sqrt{\varepsilon \mu} \partial_{t}-\mathrm{i} D \tag{13}
\end{equation*}
$$

and consider the purely vectorial biquaternionic function

$$
\begin{equation*}
\vec{V}(t, x)=\vec{E}(t, x)-\mathrm{i} \sqrt{\frac{\mu}{\varepsilon}} \vec{H}(t, x) . \tag{14}
\end{equation*}
$$

Proposition 1. The quaternionic equation

$$
\begin{equation*}
M \vec{V}(t, x)=-\sqrt{\frac{\mu}{\varepsilon}} \vec{j}(t, x)-\beta \sqrt{\frac{\mu}{\varepsilon}} \partial_{t} \rho(t, x)+\frac{\mathrm{i} \rho(t, x)}{\varepsilon} \tag{15}
\end{equation*}
$$

is equivalent to the Maxwell system (6)-(8), the vectors \vec{E} and \vec{H} are solutions of (6)-(8) if and only if the purely vectorial biquaternionic function \vec{V} defined by (14) is a solution of (15).

Proof. The scalar and vector parts of (15) have the form
$-\beta \sqrt{\varepsilon \mu} \partial_{t} \operatorname{div} \vec{E}+\sqrt{\frac{\mu}{\varepsilon}} \operatorname{div} \vec{H}+\mathrm{i}\left(\operatorname{div} \vec{E}+\beta \mu \partial_{t} \operatorname{div} \vec{H}\right)=-\beta \sqrt{\frac{\mu}{\varepsilon}} \partial_{t} \rho+\frac{\mathrm{i} \rho}{\varepsilon}$
$\beta \sqrt{\varepsilon \mu} \partial_{t} \operatorname{rot} \vec{E}+\sqrt{\varepsilon \mu} \partial_{t} \vec{E}-\sqrt{\frac{\mu}{\varepsilon}} \operatorname{rot} \vec{H}-\mathrm{i}\left(\operatorname{rot} \vec{E}+\beta \mu \partial_{t} \operatorname{rot} \vec{H}+\mu \partial_{t} \vec{H}\right)=-\sqrt{\frac{\mu}{\varepsilon}} \vec{j}$.

The real part of (17) coincides with (6) and the imaginary part coincides with (7). Applying divergence to equation (17) and using the continuity equation gives us

$$
\partial_{t} \operatorname{div} \vec{H}=0 \quad \text { and } \quad \partial_{t} \operatorname{div} \vec{E}=\frac{1}{\varepsilon} \partial_{t} \rho
$$

Taking into account these two equalities, we obtain from (16) that the vectors \vec{E} and \vec{H} satisfy equations (8).

It should be noted that for $\beta=0$ from (13) we obtain the operator which was studied in [11] with the aid of the factorization of the wave operator for non-chiral media

$$
\varepsilon \mu \partial_{t}^{2}-\Delta_{x}=\left(\sqrt{\varepsilon \mu} \partial_{t}+\mathrm{i} D\right)\left(\sqrt{\varepsilon \mu} \partial_{t}-\mathrm{i} D\right)
$$

In the case under consideration, we obtain a similar result. Let us denote by M^{*} the complex conjugate operator of M :

$$
M^{*}=\beta \sqrt{\varepsilon \mu} \partial_{t} D+\sqrt{\varepsilon \mu} \partial_{t}+\mathrm{i} D .
$$

For simplicity we now consider a sourceless situation. In this case equations (9) and (10) are homogeneous and can be represented as follows:

$$
M M^{*} \vec{U}(t, x)=0
$$

where \vec{U} stands for \vec{E} or for \vec{H}.

5. Fundamental solution of the operator M

We will construct a fundamental solution of the operator M using the results of the previous section and well-known facts from quaternionic analysis. Consider the equation

$$
\left(\beta \sqrt{\varepsilon \mu} \partial_{t} D+\sqrt{\varepsilon \mu} \partial_{t}-\mathrm{i} D\right) f(t, x)=\delta(t, x)
$$

Applying the Fourier transform \mathcal{F} with respect to the time variable t, we obtain

$$
(\beta \sqrt{\varepsilon \mu} \mathrm{i} \omega D+\sqrt{\varepsilon \mu} \mathrm{i} \omega-\mathrm{i} D) F(\omega, x)=\delta(x)
$$

where $F(\omega, x)=\mathcal{F}\{f(t, x)\}=\int_{-\infty}^{\infty} f(t, x) \mathrm{e}^{-\mathrm{i} \omega t} \mathrm{~d} t$. The last equation can be rewritten as follows:

$$
(D+\alpha)(\beta \sqrt{\varepsilon \mu} \omega-1) \mathrm{i} F(\omega, x)=\delta(x)
$$

where $\alpha=\frac{\sqrt{\varepsilon \mu} \omega}{\beta \sqrt{\varepsilon \mu \mu} \omega-1}$. The fundamental solution of D_{α} is given by (11), so we have

$$
(\beta \sqrt{\varepsilon \mu} \omega-1) \mathrm{i} F(\omega, x)=\mathcal{K}_{\alpha}(x)=\left(\alpha+\frac{x}{|x|^{2}}-\mathrm{i} \alpha \frac{x}{|x|}\right) \Theta_{\alpha}(x)
$$

from where

$$
F(\omega, x)=\left[\frac{\mathrm{i} \sqrt{\varepsilon \mu} \omega}{(\beta \sqrt{\varepsilon \mu} \omega-1)^{2}}\left(1-\frac{i x}{|x|}\right)+\frac{\mathrm{i} x}{|x|^{2}} \frac{1}{\beta \sqrt{\varepsilon \mu} \omega-1}\right] \frac{\mathrm{e}^{\frac{\mathrm{i}|x|}{} \frac{\sqrt{\varepsilon \varepsilon \mu} \omega}{\sqrt{\varepsilon \mu \mu} \omega-1}}}{4 \pi|x|}
$$

We write it in a more convenient form

$$
F(\omega, x)=\left(\frac{1}{(\omega-a)^{2}} A(x)+\frac{1}{\omega-a} B(x)\right) E(x) \mathrm{e}^{\frac{\mathrm{i}(x)}{\omega-a}}
$$

where

$$
\begin{aligned}
& a=\frac{1}{\beta \sqrt{\varepsilon \mu}} \quad c(x)=\frac{|x|}{\beta^{2} \sqrt{\varepsilon \mu}} \quad E(x)=\frac{\mathrm{e}^{\frac{\mathrm{i}|x|}{\beta}}}{4 \pi|x|} \\
& A(x)=\frac{\mathrm{i}}{\beta^{3} \varepsilon \mu}\left(1-\frac{\mathrm{i} x}{|x|}\right) \quad B(x)=\frac{\mathrm{i}}{\beta \sqrt{\varepsilon \mu}}\left(\frac{1}{\beta}\left(1-\frac{\mathrm{i} x}{|x|}\right)+\frac{x}{|x|^{2}}\right) .
\end{aligned}
$$

In order to obtain the fundamental solution $f(t, x)$ we should apply the inverse Fourier transform to $F(\omega, x)$. Among different regularizations of the resulting integral, we should choose the one leading to a fundamental solution satisfying the causality principle, that is vanishing for $t<0$. Such election is done by introducing a small parameter $y>0$ in the following way:

$$
\begin{equation*}
f(t, x)=\lim _{y \rightarrow 0} \mathcal{F}^{-1}\{F(z, x)\} \tag{18}
\end{equation*}
$$

where $z=\omega-\mathrm{i} y$. This regularization is in agreement with the condition $\operatorname{Im} \alpha \geqslant 0$. We have
$\mathcal{F}^{-1}\{F(z, x)\}=\frac{1}{2 \pi} \int_{-\infty}^{\infty}\left(\frac{1}{\left(\omega-a_{y}\right)^{2}} A(x)+\frac{1}{\omega-a_{y}} B(x)\right) E(x) \mathrm{e}^{\frac{\mathrm{i}(x)}{\omega-a_{y}}} \mathrm{e}^{\mathrm{i} \omega t} \mathrm{~d} \omega$
where $a_{y}=a+\mathrm{i} y$. Expression (19) includes two integrals of the form
where $c=c(x)$. We have

$$
\begin{equation*}
I_{k}=\frac{1}{2 \pi} \sum_{j=0}^{\infty}\left(\frac{(\mathrm{ic})^{j}}{j!} \int_{-\infty}^{\infty} \frac{\mathrm{e}^{\mathrm{i} \omega t} \mathrm{~d} \omega}{\left(\omega-a_{y}\right)^{j+k}}\right) \tag{20}
\end{equation*}
$$

where the change of order of integration and summation is possible because the two necessary conditions are fulfilled: the series is uniformly convergent on each segment and the integrals of partial sums converge uniformly with respect to j. Denote

$$
I_{k, j}(t)=\int_{-\infty}^{\infty} \frac{\mathrm{e}^{\mathrm{i} \omega t} \mathrm{~d} \omega}{\left(\omega-a_{y}\right)^{j+k}}
$$

For $k=1$ and $j=0$ we obtain (see, e.g., [5, section 8.7])

$$
I_{1,0}(t)=2 \pi \mathrm{i} H(t) \mathrm{e}^{\mathrm{i} t a_{y}}
$$

where H is the Heaviside function. For all other cases, that is for $k=1$ and $j=\overline{1, \infty}$ and for $k=2$ and $j=\overline{0, \infty}$, we have that $j+k \geqslant 2$ and the integrand in (20) has a pole at the point a_{y} of order $j+k$. Using a result from the residue theory [6 , section 4.3], we obtain

$$
I_{k, j}(t)=2 \pi \mathrm{i} \operatorname{Res}_{a_{y}} \frac{\mathrm{e}^{\mathrm{i} \omega t}}{\left(\omega-a_{y}\right)^{j+k}} \quad \text { for } t \geqslant 0 \quad \text { and } \quad j+k \geqslant 2
$$

Consider

$$
\begin{aligned}
& \operatorname{Res}_{a_{y}} \frac{\mathrm{e}^{\mathrm{i} \omega t}}{\left(\omega-a_{y}\right)^{j+k}}=\frac{1}{(j+k-1)!} \lim _{\omega \rightarrow a_{y}} \frac{\partial^{j+k-1}}{\partial \omega^{j+k-1}} \mathrm{e}^{\mathrm{i} \omega t}=\frac{(\mathrm{i} t)^{j+k-1} \mathrm{e}^{\mathrm{i} a_{y} t}}{(j+k-1)!} \\
& \text { for } t \geqslant 0 \text { and } j+k \geqslant 2
\end{aligned}
$$

For $t<0$ we have that $I_{k, j}(t)$ is equal to the sum of residues with respect to singularities in the lower half-plane $y<0$ which is zero because the integrand is analytic there. Thus we obtain

$$
I_{k, j}(t)=2 \pi \mathrm{i} H(t) \frac{(\mathrm{i} t)^{j+k-1}}{(j+k-1)!} \mathrm{e}^{\mathrm{i} a_{y} t}
$$

Substitution of this result into (20) gives us
$I_{1}=\mathrm{i} H(t) \mathrm{e}^{\mathrm{i} a_{y} t} \sum_{j=0}^{\infty} \frac{(-c t)^{j}}{j!j!} \quad$ and $\quad I_{2}=-H(t) \mathrm{e}^{\mathrm{i} a_{y} t} t \sum_{j=0}^{\infty} \frac{(-c t)^{j}}{j!(j+1)!}$.
Now using the series representations of the Bessel functions J_{0} and J_{1} (see e.g. [24, chapter 5]), we obtain

$$
I_{1}=\mathrm{i} H(t) \mathrm{e}^{\mathrm{i} a_{y} t} J_{0}(2 \sqrt{c t}) \quad \text { and } \quad I_{2}=-H(t) \sqrt{\frac{t}{c}} \mathrm{e}^{\mathrm{i} a_{y} t} J_{1}(2 \sqrt{c t})
$$

Substituting these expressions in (19) and then in (18), we arrive at the following expression for f :

$$
f(t, x)=H(t) \mathrm{e}^{\mathrm{i} a t} E(x)\left(-A(x) \sqrt{\frac{t}{c}} J_{1}(2 \sqrt{c t})+\mathrm{i} B(x) J_{0}(2 \sqrt{c t})\right)
$$

Finally we rewrite the obtained fundamental solution of the operator M in explicit form:
$f(t, x)=H(t) \frac{\mathrm{e}^{\frac{\mathrm{i} t}{\beta \sqrt{\varepsilon \mu}}}}{\beta \sqrt{\varepsilon \mu}}\left(\mathcal{K}_{\frac{1}{\beta}}(x) J_{0}\left(\frac{2 \sqrt{t|x|}}{\beta(\varepsilon \mu)^{\frac{1}{4}}}\right)+\frac{\mathrm{i} \Theta_{\frac{1}{\beta}}(x)}{\beta(\varepsilon \mu)^{\frac{1}{4}}}\left(1-\frac{i x}{|x|}\right) \sqrt{\frac{t}{|x|}} J_{1}\left(\frac{2 \sqrt{t|x|}}{\beta(\varepsilon \mu)^{\frac{1}{4}}}\right)\right)$.
Let us note that f fulfils the causality principle requirement which guarantees that its convolution with the function on the right-hand side of (15) gives us the unique physically meaningful solution of the inhomogeneous Maxwell system (6)-(8) in whole space.

6. Concluding remarks

We have shown that the Maxwell system for the time-dependent electromagnetic field in a homogeneous chiral medium is equivalent to a single quaternionic equation. As a first natural step in studying the new partial differential operator, we obtained the fundamental solution of the quaternionic Maxwell operator for chiral media satisfying the causality principle. This allows us to solve the inhomogeneous Maxwell system in a whole space.

Quaternionic analysis methods proved to be powerful and necessary for solving a wide spectrum of problems for the electromagnetic field such as boundary value problems (see, e.g., $[4,8,10,12,16-18,22]$), construction of exact and asymptotic solutions (see, e.g., $[1,13,16]$), analysis of interesting physical implications of quaternionic models (see, e.g., [$7,15,19]$) and many others. The quaternionic reformulation of Maxwell's equations for the time-dependent electromagnetic field in a chiral medium obtained in this work opens the way for applications of quaternionic analysis technique to this important physical model.

Acknowledgment

The authors wish to express their gratitude to CONACYT for the support of this work via the grant Cátedra Patrimonial No. 010286 and a research project.

References

[1] Anastassiu H T, Atlamazoglou P E and Kaklamani D I 2003 Application of bicomplex (quaternion) algebra to fundamental electromagnetics: a lower order alternative to the Helmholtz equation IEEE Trans. Antennas Propag. 51 2130-6
[2] Athanasiadis C, Martin P and Stratis I 1999 Electromagnetic scattering by a homogeneous chiral obstacle: boundary integral equations and low-chirality approximations SIAM J. Appl. Math. 59 1745-62
[3] Athanasiadis C, Roach G and Stratis I 2003 A time domain analysis of wave motions in chiral materials Math. Nachr. 250 3-16
[4] Bernstein S 2003 Lippman-Schwinger's integral equation for quaternionic Dirac operators Digital Proc. 16th Int. Conf. on the Applications of Computer Science and Mathematics in Architecture and Civil Engineering (Weimar, 10-12 June 2003)
[5] Bremermann H 1965 Distributions, Complex Variables, and Fourier Transforms (Reading, MA: AddisonWesley)
[6] Derrick W 1984 Complex Analysis and Applications (Belmont CA: Wadsworth)
[7] Gsponer A and Hurni J-P 2001 Comment on formulating and generalizing Dirac's, Proca's, and Maxwell's equations with biquaternions or Clifford numbers Found. Phys. Lett. 14 77-85
[8] Gürlebeck K and Sprössig W 1997 Quaternionic and Clifford Calculus for Physicists and Engineers (New York: Wiley)
[9] Imaeda K 1976 A new formulation of classical electrodynamics Nuovo Cimento B 32 138-62
[10] Khmelnytskaya K V, Kravchenko V V and Oviedo H 2001 Quaternionic integral representations for electromagnetic fields in chiral media Telecommunications Radio Eng. 56 4-5, 53-61
[11] Khmelnytskaya K V, Kravchenko V V and Rabinovich V S 2001 Métodos cuaterniónicos para los problemas de propagación de ondas electromagnéticas producidas por fuentes en movimiento Cient: Mex. J. Electromech. Eng. 5 143-6
[12] Khmelnytskaya K V, Kravchenko V V and Rabinovich V S 2003 Quaternionic fundamental solutions for electromagnetic scattering problems and application Z. Analysis Anwendungen 22 147-66
[13] Kravchenko V G and Kravchenko V V 2003 Quaternionic factorization of the Schrödinger operator and its applications to some first order systems of mathematical physics J. Phys. A: Math. Gen. 36 11285-97
[14] Kravchenko V V On the relation between holomorphic biquaternionic functions and time-harmonic electromagnetic fields Deposited in UkrINTEI, 29. 12. 1992 \#2073-Uk-92, 18 pp (Russian)
[15] Kravchenko V V 2002 On the relation between the Maxwell system and the Dirac equation WSEAS Trans. Syst. 1115-8
[16] Kravchenko V V 2003 Applied Quaternionic Analysis (Research and Exposition in Mathematics Series, v. 28) (Lemgo: Heldermann-Verlag)
[17] Kravchenko V V and Oviedo H 2003 On a quaternionic reformulation of Maxwell's equations for chiral media and its applications Z. Analysis Anwendungen 22 569-89
[18] Kravchenko V V and Shapiro M V 1996 Integral representations for spatial models of mathematical physics (Pitman Res. Notes in Math. Series, v. 351) (Harlow: Addison-Wesley Longman)
[19] Krivsky I Yu and Simulik V M 1996 Unitary connection in Maxwell-Dirac isomorphism and the Clifford algebra Adv. Appl. Clifford Algebras 6 249-59
[20] Lakhtakia A 1994 Beltrami Fields in Chiral Media (Singapore: World Scientific)
[21] Lindell I V, Sihvola A H, Tretyakov S A and Viitanen A J 1994 Electromagnetic waves in chiral and bi-isotropic media (Boston, MA: Artech House Publisher)
[22] McIntosh A and Mitrea M 1999 Clifford algebras and Maxwell's equations in Lipschitz domains Math. Methods Appl. Sci. 22 1599-620
[23] Shneerson M S 1968 Maxwell's equations and functional-invariant solutions of the wave equation Differencialnye Uravneniya 4 743-58 (Russian)
[24] Vladimirov V S 1984 Equations of Mathematical Physics (Moscow: Nauka) Vladimirov V S 1971 Equations of Mathematical Physics 1st edn (New York: Dekker) (Engl. Transl.)

