
On a quaternionic Maxwell equation for the time-dependent electromagnetic field in a chiral

medium

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

2004 J. Phys. A: Math. Gen. 37 4641

(http://iopscience.iop.org/0305-4470/37/16/013)

Download details:

IP Address: 171.66.16.90

The article was downloaded on 02/06/2010 at 17:56

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/37/16
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


INSTITUTE OF PHYSICS PUBLISHING JOURNAL OF PHYSICS A: MATHEMATICAL AND GENERAL

J. Phys. A: Math. Gen. 37 (2004) 4641–4647 PII: S0305-4470(04)72531-7

On a quaternionic Maxwell equation for the
time-dependent electromagnetic field in a chiral
medium

Sergei M Grudsky1, Kira V Khmelnytskaya2

and Vladislav V Kravchenko2

1 Department of Mathematics, CINVESTAV, National Polytechnic Institute, Mexico City, Mexico
2 Department of Telecommunications, SEPI ESIME Zacatenco, National Polytechnic Institute,
Av. IPN S/N, C.P.07738 D.F., Mexico

Received 27 November 2003
Published 5 April 2004
Online at stacks.iop.org/JPhysA/37/4641 (DOI: 10.1088/0305-4470/37/16/013)

Abstract
Maxwell’s equations for the time-dependent electromagnetic field in a
homogeneous chiral medium are reduced to a single quaternionic equation.
Its fundamental solution satisfying the causality principle is obtained which
allows us to solve the time-dependent chiral Maxwell system with sources.

PACS number: 03.50.De

1. Introduction

We consider Maxwell’s equations for the time-dependent electromagnetic field in a
homogeneous chiral medium and show their equivalence to a single quaternionic equation.
This result generalizes the well-known (see [9, 16, 23]) quaternionic reformulation of the
Maxwell equations for non-chiral media. Nevertheless, the new quaternionic differential
operator is essentially different from the quaternionic operator corresponding to the non-chiral
case. We obtain a fundamental solution of the new operator in explicit form satisfying the
causality principle. Its convolution with a quaternionic function representing sources of the
electromagnetic field gives us a solution of the inhomogeneous Maxwell system in a whole
space.

2. Maxwell’s equations for chiral media

Consider time-dependent Maxwell’s equations

rot
−→
E (t, x) = −∂t

−→
B (t, x) (1)

rot
−→
H (t, x) = ∂t

−→
D (t, x) +

−→
j (t, x) (2)
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div
−→
E (t, x) = ρ(t, x)

ε
, div

−→
H (t, x) = 0 (3)

with the Drude–Born–Fedorov constitutive relations corresponding to the chiral media [3, 20,
21]

−→
B (t, x) = µ(

−→
H (t, x) + β rot

−→
H (t, x)) (4)

−→
D (t, x) = ε(

−→
E (t, x) + β rot

−→
E (t, x)) (5)

where β is the chirality measure of the medium. β, ε, µ are real scalars assumed to be constants.

Note that the charge density ρ and the current density
−→
j are related by the continuity equation

∂tρ + div
−→
j = 0.

Incorporating the constitutive relations (4) and (5) into the system (1)–(3) we arrive at
the main object of our study, the time-dependent Maxwell system for a homogeneous chiral
medium

rot
−→
H (t, x) = ε(∂t

−→
E (t, x) + β∂t rot

−→
E (t, x)) +

−→
j (t, x) (6)

rot
−→
E (t, x) = −µ(∂t

−→
H (t, x) + β∂t rot

−→
H (t, x)) (7)

div
−→
E (t, x) = ρ(t, x)

ε
div

−→
H (t, x) = 0. (8)

Application of rot to (6) and (7) allows us to separate the equations for
−→
E and

−→
H and

obtain in this way the wave equations for a chiral medium

rot rot
−→
E + εµ∂2

t

−→
E + 2βεµ∂2

t rot
−→
E + β2εµ∂2

t rot rot
−→
E = −µ∂t

−→
j − βµ∂t rot

−→
j (9)

rot rot
−→
H + εµ∂2

t

−→
H + 2βεµ∂2

t rot
−→
H + β2εµ∂2

t rot rot
−→
H = rot

−→
j . (10)

It should be noted that when β = 0, (9) and (10) reduce to the usual second order wave
equations for non-chiral media. When β �= 0 the corresponding wave equations represent
partial differential equations of fourth order.

3. Some notation from quaternionic analysis

We will consider biquaternion-valued functions defined in some domain � ⊂ R
3. On the set

of such continuously differentiable functions the well-known Moisil–Teodoresco operator is
defined by the expression D = i1

∂
∂x1

+ i2
∂

∂x2
+ i3

∂
∂x3

(see, e.g., [8]), where ik, k = 1, 2, 3, are
basic quaternionic imaginary units. Denote Dα = D + α, where α ∈ C and Im α � 0. The
fundamental solution for this operator is known [14] (see also [16]):

Kα(x) = −grad�α(x) + α�α(x) =
(

α +
x

|x|2 − iα
x

|x|
)

�α(x) (11)

where i is the usual complex imaginary unit commuting with ik , x = ∑3
k=1 xkik and

�α(x) = − eiα|x|
4π |x| . Note that besides the equation DαKα = δ where δ is the Dirac delta function,

Kα fulfils the following radiation condition at infinity uniformly in all directions:(
1 +

ix

|x|
)

· Kα(x) = o

(
1

|x|
)

when |x| → ∞ (12)

which is in agreement with the Silver–Müller radiation conditions [12].
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4. Field equations in quaternionic form

In this section we rewrite the field equations from section 2 in quaternionic form.
Let us introduce the following quaternionic operator:

M = β
√

εµ∂tD +
√

εµ∂t − iD (13)

and consider the purely vectorial biquaternionic function

−→
V (t, x) = −→

E (t, x) − i

√
µ

ε

−→
H (t, x). (14)

Proposition 1. The quaternionic equation

M
−→
V (t, x) = −

√
µ

ε

−→
j (t, x) − β

√
µ

ε
∂tρ(t, x) +

iρ(t, x)

ε
(15)

is equivalent to the Maxwell system (6)–(8), the vectors
−→
E and

−→
H are solutions of (6)–(8)

if and only if the purely vectorial biquaternionic function
−→
V defined by (14) is a solution of

(15).

Proof. The scalar and vector parts of (15) have the form

−β
√

εµ∂t div
−→
E +

√
µ

ε
div

−→
H + i(div

−→
E + βµ∂tdiv

−→
H ) = −β

√
µ

ε
∂tρ +

iρ

ε
(16)

β
√

εµ∂t rot
−→
E +

√
εµ∂t

−→
E −

√
µ

ε
rot

−→
H − i(rot

−→
E + βµ∂t rot

−→
H + µ∂t

−→
H ) = −

√
µ

ε

−→
j .

(17)

The real part of (17) coincides with (6) and the imaginary part coincides with (7). Applying
divergence to equation (17) and using the continuity equation gives us

∂t div
−→
H = 0 and ∂t div

−→
E = 1

ε
∂tρ.

Taking into account these two equalities, we obtain from (16) that the vectors
−→
E and

−→
H satisfy

equations (8). �

It should be noted that for β = 0 from (13) we obtain the operator which was studied in
[11] with the aid of the factorization of the wave operator for non-chiral media

εµ∂2
t − 
x = (

√
εµ∂t + iD)(

√
εµ∂t − iD).

In the case under consideration, we obtain a similar result. Let us denote by M∗ the complex
conjugate operator of M:

M∗ = β
√

εµ∂tD +
√

εµ∂t + iD.

For simplicity we now consider a sourceless situation. In this case equations (9) and (10) are
homogeneous and can be represented as follows:

MM∗ −→
U (t, x) = 0

where
−→
U stands for

−→
E or for

−→
H .
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5. Fundamental solution of the operator M

We will construct a fundamental solution of the operator M using the results of the previous
section and well-known facts from quaternionic analysis. Consider the equation

(β
√

εµ∂tD +
√

εµ∂t − iD)f (t, x) = δ(t, x).

Applying the Fourier transform F with respect to the time variable t, we obtain

(β
√

εµiωD +
√

εµiω − iD)F(ω, x) = δ(x)

where F(ω, x) = F{f (t, x)} = ∫ ∞
−∞ f (t, x) e−iωt dt. The last equation can be rewritten as

follows:

(D + α)(β
√

εµω − 1) iF(ω, x) = δ(x)

where α =
√

εµω

β
√

εµω−1 . The fundamental solution of Dα is given by (11), so we have

(β
√

εµω − 1) iF(ω, x) = Kα(x) =
(

α +
x

|x|2 − iα
x

|x|
)

�α(x)

from where

F(ω, x) =
[

i
√

εµω

(β
√

εµω − 1)2

(
1 − ix

|x|
)

+
ix

|x|2
1

β
√

εµω − 1

]
ei|x|

√
εµω

β
√

εµω−1

4π |x| .

We write it in a more convenient form

F(ω, x) =
(

1

(ω − a)2
A(x) +

1

ω − a
B(x)

)
E(x) e

ic(x)

ω−a

where

a = 1

β
√

εµ
c(x) = |x|

β2√εµ
E(x) = e

i|x|
β

4π |x|

A(x) = i

β3εµ

(
1 − ix

|x|
)

B(x) = i

β
√

εµ

(
1

β

(
1 − ix

|x|
)

+
x

|x|2
)

.

In order to obtain the fundamental solution f (t, x) we should apply the inverse Fourier
transform to F(ω, x). Among different regularizations of the resulting integral, we should
choose the one leading to a fundamental solution satisfying the causality principle, that is
vanishing for t < 0. Such election is done by introducing a small parameter y > 0 in the
following way:

f (t, x) = lim
y→0

F−1{F(z, x)} (18)

where z = ω − iy. This regularization is in agreement with the condition Im α � 0. We have

F−1 {F(z, x)} = 1

2π

∫ ∞

−∞

(
1

(ω − ay)2
A(x) +

1

ω − ay

B(x)

)
E(x) e

ic(x)

ω−ay eiωt dω (19)

where ay = a + iy. Expression (19) includes two integrals of the form

Ik = 1

2π

∫ ∞

−∞

e
ic

ω−ay eiωt

(ω − ay)k
dω, k = 1, 2

where c = c(x). We have

Ik = 1

2π

∞∑
j=0

(
(ic)j

j !

∫ ∞

−∞

eiωt dω

(ω − ay)j+k

)
(20)
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where the change of order of integration and summation is possible because the two necessary
conditions are fulfilled: the series is uniformly convergent on each segment and the integrals
of partial sums converge uniformly with respect to j . Denote

Ik,j (t) =
∫ ∞

−∞

eiωt dω

(ω − ay)j+k
.

For k = 1 and j = 0 we obtain (see, e.g., [5, section 8.7])

I1,0(t) = 2π iH(t) eitay

where H is the Heaviside function. For all other cases, that is for k = 1 and j = 1,∞ and for
k = 2 and j = 0,∞, we have that j + k � 2 and the integrand in (20) has a pole at the point
ay of order j + k. Using a result from the residue theory [6, section 4.3], we obtain

Ik,j (t) = 2π i Res
ay

eiωt

(ω − ay)j+k
for t � 0 and j + k � 2.

Consider

Res
ay

eiωt

(ω − ay)j+k
= 1

(j + k − 1)!
lim

ω→ay

∂j+k−1

∂ωj+k−1
eiωt = (it)j+k−1 eiay t

(j + k − 1)!

for t � 0 and j + k � 2.

For t < 0 we have that Ik,j (t) is equal to the sum of residues with respect to singularities
in the lower half-plane y < 0 which is zero because the integrand is analytic there. Thus we
obtain

Ik,j (t) = 2π iH(t)
(it)j+k−1

(j + k − 1)!
eiay t .

Substitution of this result into (20) gives us

I1 = iH(t) eiay t

∞∑
j=0

(−ct)j

j !j !
and I2 = −H(t) eiay t t

∞∑
j=0

(−ct)j

j !(j + 1)!
.

Now using the series representations of the Bessel functions J0 and J1 (see e.g. [24, chapter 5]),
we obtain

I1 = iH(t) eiay tJ0(2
√

ct) and I2 = −H(t)

√
t

c
eiay tJ1(2

√
ct).

Substituting these expressions in (19) and then in (18), we arrive at the following expression
for f :

f (t, x) = H(t) eiatE(x)

(
−A(x)

√
t

c
J1(2

√
ct) + iB(x)J0(2

√
ct)

)
.

Finally we rewrite the obtained fundamental solution of the operator M in explicit form:

f (t, x) = H(t)
e

it
β
√

εµ

β
√

εµ

(
K 1

β
(x)J0

(
2
√

t |x|
β(εµ)

1
4

)
+

i� 1
β
(x)

β(εµ)
1
4

(
1 − ix

|x|
)√

t

|x|J1

(
2
√

t |x|
β(εµ)

1
4

))
.

Let us note that f fulfils the causality principle requirement which guarantees that its
convolution with the function on the right-hand side of (15) gives us the unique physically
meaningful solution of the inhomogeneous Maxwell system (6)–(8) in whole space.
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6. Concluding remarks

We have shown that the Maxwell system for the time-dependent electromagnetic field in a
homogeneous chiral medium is equivalent to a single quaternionic equation. As a first natural
step in studying the new partial differential operator, we obtained the fundamental solution
of the quaternionic Maxwell operator for chiral media satisfying the causality principle. This
allows us to solve the inhomogeneous Maxwell system in a whole space.

Quaternionic analysis methods proved to be powerful and necessary for solving a wide
spectrum of problems for the electromagnetic field such as boundary value problems (see,
e.g., [4, 8, 10, 12, 16–18, 22]), construction of exact and asymptotic solutions (see, e.g.,
[1, 13, 16]), analysis of interesting physical implications of quaternionic models (see, e.g.,
[7, 15, 19]) and many others. The quaternionic reformulation of Maxwell’s equations for the
time-dependent electromagnetic field in a chiral medium obtained in this work opens the way
for applications of quaternionic analysis technique to this important physical model.
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grant Cátedra Patrimonial No. 010286 and a research project.

References

[1] Anastassiu H T, Atlamazoglou P E and Kaklamani D I 2003 Application of bicomplex (quaternion) algebra to
fundamental electromagnetics: a lower order alternative to the Helmholtz equation IEEE Trans. Antennas
Propag. 51 2130–6

[2] Athanasiadis C, Martin P and Stratis I 1999 Electromagnetic scattering by a homogeneous chiral obstacle:
boundary integral equations and low-chirality approximations SIAM J. Appl. Math. 59 1745–62

[3] Athanasiadis C, Roach G and Stratis I 2003 A time domain analysis of wave motions in chiral materials Math.
Nachr. 250 3–16

[4] Bernstein S 2003 Lippman–Schwinger’s integral equation for quaternionic Dirac operators Digital Proc. 16th
Int. Conf. on the Applications of Computer Science and Mathematics in Architecture and Civil Engineering
(Weimar, 10–12 June 2003)

[5] Bremermann H 1965 Distributions, Complex Variables, and Fourier Transforms (Reading, MA: Addison-
Wesley)

[6] Derrick W 1984 Complex Analysis and Applications (Belmont CA: Wadsworth)
[7] Gsponer A and Hurni J-P 2001 Comment on formulating and generalizing Dirac’s, Proca’s, and Maxwell’s

equations with biquaternions or Clifford numbers Found. Phys. Lett. 14 77–85
[8] Gürlebeck K and Sprössig W 1997 Quaternionic and Clifford Calculus for Physicists and Engineers (New

York: Wiley)
[9] Imaeda K 1976 A new formulation of classical electrodynamics Nuovo Cimento B 32 138–62

[10] Khmelnytskaya K V, Kravchenko V V and Oviedo H 2001 Quaternionic integral representations for
electromagnetic fields in chiral media Telecommunications Radio Eng. 56 4–5, 53–61

[11] Khmelnytskaya K V, Kravchenko V V and Rabinovich V S 2001 Métodos cuaterniónicos para los problemas de
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